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--- >In the study of the foundations of the subjectivist theory of statistics,

we find that each aspect of the theory corresponds to a different application

of a single manipulation, namely the adjustment of one belief structure by

another belief structure. This article describes the technical machinery of
J,

this manipulation to a sufficient level of detail to cover all of the

applications of the adjusted belief structure in the foundations of the

theory. We also discuss the relationship between the adjustment of belief

structures and the conditioning of random variables. (Essentially the latter

*% is a simple special case of the former.)
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ADJUSTED DELIZF STRUCTURES

Michael Goldstein*

I . Introduction

Probability theory has an extremely wide range of application. However, in most

applications, the basic manipulations are essentially the same, the differences arising

from the context within which these manipulations are expressed. Thus, identifying and

understanding these basic manipulations is essential for separating out the underlying

conceptual issues from the specific technical difficulties of a particular application.

This is particularly important in the study of the foundations, as our aim is to

describe the possibilities of the theory. Thus, we shall now identify, and discuss in

detail, the single manipulation of the belief structure which we repeatedly require, namely

the adjustoent of one belief structure by another belief structure. Just as we find that

our study of the foundations is naturally expressed in terms of belief structures, so we

will find in subsequent articles that each aspect of the theory will simply correspond to a

different adjustment of the belief structure.

This article im a sequel to the previous technical report entitled "Belief

Structuresm, and is the second of a series of articles laying the foundation for the sub-

Jectivist theory. Our Intention in this article is simply to explain the general process

of adjustment in sufficient detail to cover all of the various applications of this process

that we make in subsequent articles. The notation is as in the previous report.

In order to motivate the construction, we will begin by discussing the simplest

example of such an adjustment. ,-.7
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2. Subulaces and alternative inner products

in our investigations, we choose as fundamental the inner product space A defined by

the inner product (X,Y) - P(Y) over the linear apace L. DeFinetti (Theory of

Probability, 1974, section 4.17) discusses this space as a simple geometric interpretation

of the provision of products of random variables. He then observes that there is an

alternative inner product which is mre commonly used, and way appear more natural. This

inner product (, ' is defined over L by

(x,T)' - P(X-P(X))(T-P(!)) - cov(XoY)

Let us call the inner product space generated by this inner product A' (Note that

we must identify, as equivalence classes, all random quantities which differ by a constant,

so that, for example, I0  (the unit constant) is equivalent to the zero vector in A'.)

Thus, in A', lXI is the standard deviation of X. Very loosely, we can consider

that vectors with large norms in A' correspond to random quantities whose values you are

"very uncertain of", while vectors with small norm are those whose value you are "fairly

sure ofs. The inner product is covariance, and orthogonality corresponds to zero

correlation.

Thus, if we wish to consider *relationships" between random quantities, and to express

our "degree of uncertainty" about these quantities, then in many ways the space A, seems

a more natural object than the space A. we will show that, in a certain sense, A' is

not a "different" inner product space to A, but that A' can more usefully be considered

as an "adjustments of A. This is a typical example of the purpose of adjustment, namely

to remove certain features of the space A which are not of imediate interest (such as

the individual previsions of the elements of C), in order to focus attention on aspects

which are of interest (such an the "uncertainties", or variances, of the elements of C).

As a first step in describing our construction, notice that rather than defining A

and A' in terms of different inner products, we can instead view A' as a subspace

of A. Specifically, define A* to be the orthogonal complement of the subapace A0

of A, (A0  is the subspace spanned by Xo). Squivalently A* is the subspace of A of

all vectors of the form x - P(X)Xo. We can now identify the spaces A' and A, simply

-2-
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by identifying each (equivalence class) X with the corresponding random quantity .

"corrected for the mean", i.e. X - P(X)XO . (Note that as members of an equivalence claus

differ by a constant, each member of a particular class is identified with the same random *-

quantity.) The identification TMl) - X-PCX)X0  preserves the inner product, as for any
ze Ye6 At"

(XY)' - (TCX),T(Y)) .- e

Thus, we will never require the alternative inner product structure A' as whenever ...-

we want only to consider variation about the mean, then we can focus attention on the

subspace A' of A. Notice in particular that A is the orthogonal sum of A* and A0

(i.e. AA 0  A*).

3. AdJusted belief structures

The construction of section 2 is useful in its own right, but it is also the simplest

example of a very general construction. In this example, we began with a belief structure
costructed around a list C - {Xl*...,Xn}. We then introduced a new quantity X0 into .

the structure and used this new quantity to split the belief structure into orthogonal

subspaces. The general construction, of which this is a special case is as follows.

i) We begin with a belief structure A. constructed from a collection C -

{a,+x ... x) ".. y ,

(ii) We introduce a further collection of random quantities C' - fY1 ... ,Y k (where some

elements of C and C' may be the same).

(iii) We construct the belief structure 8 from the collection C' (i.e. we evaluate .

(yi,yj) - p(YiYj ) for each i, j).

Civ) We now add the belief structures A and 8, to give a new belief structure

SA + , spanned by the elements ... Y (i.e. we evaluate each

8,~~~~~~~~o. spane byteeeet.X .. #mY

P(Xiyj)).

Cv) We now divide the space P into two orthogonal subepaces B and BI, where is

the orthogonal complement of 8 in V (i.e. so that V 8 0 8 ).

-3-
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In the construction of section 2, the collection CO was the single quantity XO

The belief structure 8 was the space we previously termed A0. When we constructed the V.

space A by adding A0 to the space spanned by (Xi,...,X), we evaluated (X i) -

P(Xi) for each i. We then divided A into orthogonal subspaces AO and A0, where A'

is the space we previously termed A%.

In this case, introducing the constant X0  as a subspace has separated out your

beliefs so that you may, if you wish, consider variances and covariances separately from

man values. The general construction will be useful whenever the now spaces 8 and

that are created have a natural subjective interpretation. The full importance of this

construction will be revealed when we consider, in subsequent articles, the revision of -

your beliefs. We will show that, in a certain important sense, the separation between

subspaces is preserved under the revision of the inner product over the belief structure,

for a wide class of choices of S. Further, we will identify a particular choice of. .

space 8 for which the above construction will essentially define the properties of your

revisions of belief.

However, for the present, let us simply note that this is an interesting construction.

which we are likely to use fairly often. Thus, we introduce a helpful piece of notation to

describe the construction.

Definition. If A and 5 are both belief structures, then the belief structure A

adjusted for the belief structure B, written A/8, is defined to be the orthogonal

complement of the subspace B in the space A + B.

Thus, for example, A* - A/AO, i~e. A* is the space A adjusted for the constant

space. Notice that the definition is the same whether the elements of A and 8 are

partially or completely distinct. The notation identifies the orthogonal complement of a

space with the associated quotient space. It is suggestive of a connection between the

operations of adjusting a space and the "conditioning' of random quantities. This

connection will be explored after we have briefly outlined some of the properties of

adjusted spaces.

-4-
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4. Adlusted belief structures and proiections

Adjusted belief structures obey a few simple rules which we list here for

convenience. (The proofs are straightforward.) For any belief structures Al,...,Ak, B.

Mi Ai/S - 0, the zero space, if and only if AE LB. N

(ii) AilS - Ai if and only if Ai 1 B

(iii) (Ai + Aj)/B - (AilS) + (Aj/8)

(iv) A, + A2 +...+ Ak - A, e (A 2/A,) e (A3/(AI + A2 )) *.@(Ak/Al *e.+Ak-1))

(v) (A,/6) I (A215) if and only if A, c 8 + DI, A2 c 8 + 02, vhere B, VI, V2 are

mutually orthogonal.

(Property (iv) is useful when we wish to systematically adjust each of a collection of

belief structures. Property (v) is the key to the general representation theorems that we

@hall develop in later articles.)

The general properties of adjusted structures are, however, more conveniently

expressed by linking each subspace with the corresponding orthogonal projection into the

subspace.

Notation. ror any closed space 5, we denote by P 5 (.) the orthogonal projection

operator from A into 8 (i.e., for each X e At P,(x) is the choice of element Y e 5,

for which IX-Y1 is minimized over all Y 6 8). '

We do not require that 8 should be a subspace of A. Thus, the first stage in

constructing P 8 G) is to construct the combined space V - A + B. The orthogonal

projection operator into 8 is defined over V, and P5 is the restriction of this

operator to A (now considered as a subspace of V). Notice in particular that P5 is

the identity operator if and only if A c B and P58 is the zero operator if and only

if AlI B.

The relationship between projections and adjusted beliefs is that, f or any spaces

91and 821 we have

"( 5818) iPSI + P(82/81)() .

-5-
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Thus, we can add a further basic property to the properties Mi ( v) of adjusted

spaces listed above, namely

(vi) For any belief structures A, Oil 820

A/(81482 ) =(/ 1)/(8 2/8 1 ).

(The space A/(B1 .B) is spanned by elements of the form X - PBI8 2X-

X -p X- PB 2 /BI )X. The space A/8 1  in spanned by elements of the form X - 15 , so

that (A/81)/(82/8,) is spanned by elements of the form X - P5  ~5+PPX

which is the same as the elements of A/C8 1+82 ) as 'BVI1P1is h eooeao

(because all 82/8, are orthogonal). The simplest special case of (vi) is when 81 82

so that

(vii) A/8O2  ( A/8 1 )/82  ( A/R2)/B1.

it will often be usetal to be able to "adjustm spaces in several stages, and so this

raises a natural converse question to property (vii) namely for what spaces 81, 62 does

(A/81)/82 - (A/B,2 )/51

and when does either adjustment correspond to a single adjustment (4/P) for some further

space P? The answer is as follow

(viii) (A/81)/8 2 - (A/82)/81

if and only if P are coinauting projections (i.e. PSIP8 - P6 8 1)
P5an 828

Pand P8o1ueifB - 8 OP1 Vi 2 - 8B OP2 . where 5, V1. P2  are mutually

orthogonal. (This condition is trivially satisfied when a, 1 I2) n this case 1515 -

151PO - PIS and (A/81)/82 -CA/8 2 )/B1  A/CSOD 1@V2 )-

Further, an 81 and (9/1 are orthogonal spaces, we can automatically decompose

the inner product Over 81 + 82. For any x, Y e A, we have

(P( M5)X.P( 5)Y) - (P Ml) P MY))+(P W, X)P (B) Y)) . (2)
1 2 1 2 a, 81 21 21

A special case of this decomposition which we will frequently use follows from setting

-2 A. Thus, PCB*A) is the identity operator and so each choice of space Bresolves

each element x e A into two orthogonal components, as

x PO +5 X PWB(x) (3)

-6-
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so that the inner product over A is decomposed as

(xY) (P8(x),'(Y)) + (PA/B(X), PA/B(Y)). (4)

Thus, when you construct the inner product structure over A, you may separately ;
consider your inner product structure 9 and your belief structure (AAS) and these

assessments must combine to determine your belief structure A. This will provide a wide

variety of coherence checks for your assessments. (We will see in later articles that the

mseat important coherence checks will be associated with your revisions of belief over ,

and over (A/8).) These checks will be relevant when either B or (A/3) or both have a

natural interpretation. We have seen one example already, namely in section 2. Here A* =

A/A 0, and

A = P()x 0 , P A,x) -x - (X ) 0  ,..

so that relation (1) becomes

(X,Y) = P(X)P(Y) + cov(X,Y)

i.e. we have decomposed the inner product into a separate consideration of means and

covariances.

In the previous report on "Belief Structures" we noted the fundamental relationship

between prevision and projection. Notice that we can numerically identify the prevision

of X, PX), with the particular projection P (X). Further, the projection PA isAO0
simply a particular case of the general projection. P5  is, in a sense, a generalization

of conditional prevision, with the space 8 acting analogously to the "conditioning"

random quantities. (We will make the relationship precise in the next subsection.) Just

as our choice of notation P(.) allows us to pass interchangeably between probabilities

and expectations, so it also allows us to pass interchangeably between previsions and

projections.

The space A/A 0  describes the variances and covariances of the elements of A, i.e.

the variation in the quantities around the plane of certainty. In the sa way A/.

summarizes the variation in the elements of A when we have taken account of the variation

in B. In a sense PA/8 gives the "residual vectors" for the "fitted regression" Pg.

-7-
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For completeness, we now record the basic formulae relating to projections. WeIt

introduce the following piece of notation. Suppose that bl* .a , ..,.. *br are

elements of the inner product space V. Suppose we write a - (a,....,ak),k ,. (bi, ... Obr).

Then we shall denote by (aJb th ati hs i,j)th term is Cai~bj). With

this notation, for any finite dimensional subspace 8 and any basis of 8, bI.., the

projection operator P. can be written, for each X, as

PBMx A= l) bX

where b =(bl,... ,b1 ).

Further, the squared distance between X and PB(X) is given by the ratio of two

determinants, as

*P& 5 (X1
2  IX- P(X)~ -l(b(X)l (X)JI

where b(X) is the vector MX b1,....,bk).

If ble ... #bk are an orthogonal basis, (i.e. Cbiibj) =0, i J), then the above

formulae simplify to give

M b~iX) b

2(birlE
2/(X I (X,X)- ___

IP~,(I) i

Finally, the following structural properties of projection operators will be important

in later developments.

Mi Projections are idempotent (i.e. p.2 -p8)

(more generally, P sP5 if P5 if 5 .

(ii) Projections are seif-adjoint, i.e. for any X. Y e A + 8

(Xpsy) = (PBXY)

(Note an operator is a projection if and only if it is idempotent and self-adjoint.)

An important consequence of U)i and (ii) is that for any X, Y e A4,

-8-7
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(iii) (x,PBY) - (xPBPSy) ...

" (P5X,PBY)

- (P5XY) ,

which, for example, gives a direct demonstration of the relationship

SP 1WS 2 .1I l2  1PXl 2 ,
IPM5X)1 - - I ""'

(iv) P8  is a bounded linear operator, 1P.1 - I over (A4S), so that the restriction '. .

of P5  to A has norm not greater than one. (For any linear transformation T, IT =-

UTXtSUP --- , )

5. Conditional prevision

we will now discuss the formal relationship between conditional beliefs and adjusted

belief spaces. Thus, we begin by briefly reviewing the notion of conditional probability,

or in the present case conditional prevision which Do Finetti defines as follows.

Definition. The conditional prevision of the random quantity X, given event H,

written P(XIH), is the value that you would choose if, having made this choice, you were

to suffer a penalty L given

L K H(x-X)

where K defines the units of loss and H is the indicator function for the event H.

(In other words, we have a "called-off" penalty, which is only invoked if H occurs.)

The point to observe about the definition is that it appears to make events "special"

again. That is, having argued, in constructing the belief structure in our previous

report, why we do not need to distinguish at a fundamental level between probability and

expectation, we have now introduced a definition which only makes sense when the

conditioning random quantity H is a two valued random quantity. If this is really the

case, and if our new definition is actually necessary to our subsequent development, then

this suggests that such a distinction is indeed crucial to the theory. Further it suggests

that the problems that we intended to overcome by working with expectation rather than

probability are actually unavoidable, as even if we can avoid constructing an exhaustive 1

collection of outcome for the primary quantities of interest, we will still be forc j to

-9-
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reduce observational evidence into a partition (which is an even more daunting prospect, as

at least you are free to chooz. your primary quantities of interest, but the "data" is far

less under your control). What we will argue in detail in subsequent articles is that

events are not "special", and that the restriction of the definition of conditional

prevision to events is precisely as arbitrary as would be a restriction of the definition

" of prevision itself to events.

The coherence condition that De Finetti imposes is that you do not prefer a given

h%.
* penalty if you can choose a different penalty which is certainly smaller. De Finetti shows

that the necessary and sufficient condition for coherence in evaluating P(XIH), P(XH)

and P(H) is that

P(RX) - P(XIH)P(H)

- in addition to the inequality inf(XjH) ( P(XIH) ( sup(XIH), where the inf and sup are

over all values of X consistent with H. (Notice that if X is itself an event, then

7. the above condition is the usual theorem of compound probabilities.)

Observe in particular that P(XIH), by definition, expresses your choice made now,

before H has been revealed, when confronted with a penalty in X which will be called

off unless H occurs. It is very easy to twist this around and declare that if you

discover that H has occurred, then your prevision for X "should, become the value that

you have assigned for P(XIH). Indeed, all of Bayesian statistics is based around this

"principle". We will discuss in detail in a later article, precisely why this view is

* misguided. For now, let us simply observe that the called off penalty definition of

conditional prevision does not, of itself, say anything concerning your future beliefs.

Thus, any linkage between conditional prevision and future beliefs is not self evident, but

requires additional justification.

Finally, let us briefly outline a useful property of conditioning. Consider any

finite partition of possibilities, i.e. a set Ell...,E k  of events such that one and only

one of the events will occur. We may define the prevision of X conditional on the

partition E,...,Ek as

P(XIH) =(IE) P(Xl~k)Ek

-10-
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(In other words, P(Xi) is the random quantity which takes value P(X l~i) if .

occurs.) Thus

p(P(Xln)) - p(XJ13l)lC3) I ..M P(X l)P(lgk )

-p(xZI +••. e(~) ,-.-;

4.......

1I~a. PM!.
PI k

as 3Z +..3Zm

If Y is the random quantity which takes a finite number of possible values

y. .... yk, then we can similarly write P(XJY) - 1(XI) where the partition is over

{S S Y Y .i}, and again

P(p(Xly)) -pox). .''''

Does this relationship hold, if we allow Y to take an infinite number of possible

values? Yes, if X is bounded and P(Si) - 1, (as we can define Pn -U *'*+n

Gn - 1 - Ynt and writs

P(X) P(XIlpn)P(Fn) + P(XlGn)P(Gn )

The second term on the right hand side tends to zero, while the first tends to P(PCXIY)).

However, in general, when we drop the property of countable additivity over the

partition, the property P(P(X(Y)) - P(X), need not hold. (This is termed non-

conglomsrability.)

6. Adiustd belief structures and conditional beliefs

In our treatment of belief structures, we observed that the relationship between

provision and projection Is Implicit in the definition of prevision, We will now make a

similar identification between conditional prevision and the more general projection

operator.

Thus, consider a general operator P8' where B is spanned by the finite collection . -

of elements B1 . B21 ...Bk . By definition ]PsX) is the linear combination

CIB 1 +...+ Cksko, where the coefficients are chosen to minimize .,

P(X - (dl3I +...+ dkBk ))%

'. '. ,*1

%. %~ N,
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* over all choices of d....,d'4  Preferring penalty A to Penalty B corresponds to

P(A) < (b). Thus, we may interpret the values el..Ikas the values which you would

choose if you were subsequently to suffer the penalty -

L - (Z - (c131 +...+ ck~k))

Now consider the definition of conditional provision, P(XJH). You are required to
0 *.*

* choose your preferred penalty H(X-d)2, over choices of d,' where 9 is the indicator

* function of the corresponding event. This looks somewhat different from the choice you

have to make in assessing Pa. However observe that when you assess MINJ), you are

also, by coherence, implicitly making a further assessment of P(XI5 0 ), where Hc -R

the complement of H, as

P(X) -PcXIH)P(H) +P(X1MC)(1 - 1(H))

(so that if you specify P(XIH), P(X), P(H), then this determines the value of P(X130)).

Thus, when you consider the penalty L - (X-d)2, you also implicitly make anases

ment for the penalty c N(X) 2~

Thus an equivalent formulation of the definition of conditional prevision is that you

must specify two values d and dc and you will incur a penalty

L -H(X-d)
2 + Hc(X-dc)2

Now as

H +Hc 1, lHHC .0, 2 -Hi He B

the above penalty may be identically rewritten as

L =(X -dH -dcHc)
2

From the discussion at the beginning of this section it in clear that your choice of

values d - P(X11), dc - P(XIBc) is equivalent to your choice of the element dil + dm

which is the projection of X into H, the subspace spanned by H, Hc i.e.

PH(X P (XIH)H + PC1JH0)Hc

Notice that because P(1111) is the coefficient of H in the projection of X

into H, we can imdiately deduce the usual formula for conditional prevision from the

standard formula (5) for the coefficients of the projection operator.

-12-
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As R and Hc  are orthogonal vectors, the coefficient of R in i ) is given

by (X,N)/(H,H). As H2 - H, we have that

an r ed. MIN ) - P(XH)/P(H),

Thus, directly from the definition, conditional prevision on R is simply the

projection into the subapace H spanned by H and Hc, (Mquivently H is the space "'--€

spanned by a and X0, the unit constant, which explains why your specification of

MISXl) fixes P(Xlc).) -

Of course, if we had first established the relationship PIRXl) . P(X)/PI(), then we

could simply reverse the above argument and deduce the relationship between conditional

provision and projection. Thus, the relationship is not so such a property of our .. -

particular choice of definition, but corresponds to any definition which yields the

familiar formula for conditional prevision. However, we have preferred to take a

formulation in which everything can be immediately deduced simply from a careful statement -'"

of the definition itself.

in precisely the ere way, if I (sl.... 03k) is a partition, then letting 11 also

represent the belief structure spanned by the random quantities 21,... Ik we have for -

any X,

P+'l) - M(331),, +...+ P(x1•k)Zk •**

Notice that Pf(X) is numerically equivalent to the quantity which we termed p(xIfl)

in section 4. In this sense we move interchangeably between conditional prevision and

projection. Notice that this gives a gecetric interpretation as to why P(P1 (X)) = P(X).

That is, as Z, +...+ Rk - 10. XO is an element of II, so that A0 c H.

Thus, if you determine PMI) by projecting X directly into A0 , or by first -

projecting X into R and then into A0 , you will obtain the same result in either

case. This is simply a special case of the general property P P P if B c V.

When we discussed conditional provision above we observed that it was very disturbing

that we appeared to need such a definition, because it appeared to give events a special

status that we were anxious to avoid. (For example, in our general discussion of belief

-13-
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structures we argued against the requirement that we should be forced into a full

probabilistic specification for all quantities of interest.)

We have now completed the first step in dispensing with the idea of conditional

prevision, namely we have shown that the definition itself does not introduce a now concept .

into our system, but simply identifies a particular type of projection operator. We may

now repeat essentially the same general argument as when we observed that it would be an

arbitrary restriction to say that there was something "specialm about the prevision of an io

indicator function i e. that there was no logical distinction between your consideration of

the penalty (X-) when X was a two valued quantity or when X was a many valued

quantity.

2,In the same way, when you consider your choice of penalty (X - c1B1 -. .-CkBk)

over choices of c 1 •.. . ,ck, there is no logical distinction between your choice when

B 1 1... #&k happen to be the indicator functions for the events of a partition and your

choice when B,.... ,sk are any general random quantities.

Again this is quite separate from the psychological question as to which choices you

personally prefer to consider. You may well find it convenient to work with conditional

probabilities in certain situations. Notice that if you specify conditional probabilities

directly, and deduce various unconditional probabilities from the coherence relations, then

this correspond to a direct specification of the projections into certain subspaces, and

construction of the inner product space in such a way as to be consistent with the

projections. This illustrates the argument of section 4, namely that the various adjust-

ments of a belief structure offer you a variety of different, but consistent approaches to

specifications of your beliefs, and that you should choose the most intuitively meaningful

approach for the problem at hand.

It still remains to be considered whether the projection into a subspace spanned by

indicator functions has some property (logical, not psychological) which distinguishes it , .

from the more general projection. In particular, it might be thought that the

interpretation of a projection into an indicator space is "special", because it correspond

-14-
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to the usual Dayesian approach of revising your beliefs by conditioning on observed events

(whereas, there is no such obvious correspondence for the general projection).

in later articles we will show that such a distinction is entirely without foundation

(at least, in our approach). For now, let us emphasize again that everything that we have

cold concerning your conditional previsions, and the corresponding projections, relates to

probabilistic relationships (expressed now) between various random quantities. There is,

as yet, abolutely no implication in anything that we have said to suggest any relationship

whatever between your expressed beliefs at different time points. Such relationships will ,

turn out to be the crucial feature of the theory of belief structures. However, because

this issue requires very careful consideration, we will defer it completely to later

articles when we have laid the necessary groundwork for a proper treatment. Thus, for

example, the conditional prevision P(XIH) bears, as yet, no relationship with the value J .* ,*

that you may express for P(X) if you learn that H occurs. Do not imagine intrinsic

properties of quantities without providing careful justification.

Finally, let us extend the link between belief structures and full Dayesian speci-.

fications to cover the general adjusted belief space. Thus, we begin with the space

A - Y.2(0,P) (i.e. the space of all square integrable functions on 0 under the usual

L2 inner product with respect to the probability measure P). we introduce the now ...

space whe - 2(') where Q is a probability measure over the probability space S. The

projection operator PS is "conditional expectationn, that is for any element g e A,

PS(g) is the element of B defined pointwise for each a e S by ',-

(P"g)(2) in •(W)dP(Wls)

(The conditioning is with respect to the joint probability distribution on 0 x 6, which

essentially creates the space A + 8.) I

In nore familiar terms 0 is usually the "parameter space" and S is the "sample . ..-

sace". Typically there is a joint p.d.f. over 0 x a composed an f(a,w) = f(slw)p(w),

where p(w) is the prior density for the parameter w, and f(slw) is the likelihood

function. The above integral thus reduces to

J f(afw~p(v)dv '-,*..'-

5.'.. ,+.. o5
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7.* Adlustad belief construction

As a simple example, to mtivate the next stage in our development, let us return to

the example discussed in the previous article. Suppose that the teacher decides to

restrict the belief space A to quantities for which he is fundamentally interested in -5

specifying his beliefs. Zn this case, that will be the various numerical measures of the

student's performance in the coming year. He places all of the other quantities, suck asu.c..h

the previous year's test scores into a second belief structure 8 (i.e. 8 contains all

of those quantities about which he has no interest in specifying belief except inasmuch a n . *-

this will suggest or explain or clarify certain of his beliefs over A).

This separation will be an important feature of our further development. Thus, let us .

term A the primary belief structure and B the supnort structure. Theose ters do not .

reflect fundamental aspects of the random quantities involved (for example, some functions

of a particular random quantity may be elements of A, and other functions of the ame .

random quantity my be elements of 8). Instead the term reflect the external objectives

for which the specification is being made. We will term P - A + 8 the total belief

structure (i.e. V is the structure which, in principle, delimits the arguments which can

be made).

As a simple example, suppose that the teacher has constructed the primary space A

spanned by X0 = 1, X1 - S, and the support space 8 spanned by IoVY) (S is the score

for the coming test, Y is the score for a comparable earlier test - though the teacher

has not yet seen the value of Y). He then constructs the space A/H. Thus, he has

assessed values for P(S), P(S2 ), P(Y). PVy 2 ) and P(Ys). He constructs the projection Fe

by using the relation P 8 PA0 + p /A 0and formula (5) to give the familiar "least

squares" formulae

cov( S *Y)

PB(S) - P(S)Xo + var Y'.

and (6)
2

sP (S) 2 2 coy (Y,S)
A( - I - _5(s)U - v

As we have emphasized above, P. is simply a generalization of P/' that is from a

2numrically fixed prevision (with associated penalty (S-P(S))2 ) to a nuerically random
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prevision (with penalty (8op8(S))2). if you express a strong preference for PS()'" ...

over PA(8), (as quantified by a large value of (IPA/ (W)1 2 - IP'A(S)12 ), or
2

equivalently a largo value of va (M) then this information is not qualitatively

different from announcing a strong preference for one value of P(M) over another (for

example, preferring a penalty (2-1)
2 to a penalty (8-5)2). It remains for you to

interpret your preference in the context of the problem under consideration. In this

case, strong preference for Pg(8) over PAOM() might suggest that use of Y to

Upredicto a but we will consider this in detail in subsequent articles. For now, we

view PS(8) simply as a Orandom prevision", asserted now.

To illustrate this interpretation, consider the following calculation. suppose that

there is a critical *pess-fail" level a for 5, and let is I if 8 ) a and 18  0

otherwise. Define Iy - 1 if Y > y (a corresponding critical value), and ly - 0 ,'

otherwise. The obvious quantity to consider is the conditional probability that you will

pass test 8 given that you have passed test Y1 i.e. to evaluate P(S.%sjy)y, or

equivalently to evaluate P(IIy)/P(Iy).

Thus, suppose you &ses P(IX) - p, P(Iy) - q, P(I8Iy ) - u so that P(S~slY>y)

- u/q. The larger the value of u/q compared to p the more "relevantw it may be to

observe the event Y > y. Now can we express this?

Prom the discussion of section 6 the conditional probability argument can be met in

the inner product space. Thus let A be spanned by X0 , I, and 8 by X0 , ly. The

values p, q, u fully specify the total space A + S. Applying formulae (6) we have

cov(Is.I) -,".I -.
P (I8 X oP(X8 + v~ y) (Iy P(Iy)X0 )"°,... ,... '
P5 (5  0 8 var(I ) Y 0

p 0 + :J2 (,- qXO )

q-q

and (7)
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L -. 2
'. .. ,;

q--APa - PtIks2 va i - 1,S then nmil

2 -(u-pq)
2  :'"

1I$1 takes 2 possible values. If Y > y, i.e. Iy - 1, then numerically '.. ....

PS(Is) - u/q - P(S>sIY>y)

and if ly - 0, then numerically

so that, with ,- I - , we have ,...-.

(I - IYp(Isl y) * IyP( 11• ""

This is of course the formula for projection from section 6. We have derived it again

to emphasize that it is precisely the same equation as (6), derived in the same way (i.e.

through (71) and with the same justification (in terms of choosing a "random" prevision) as

for (6), but simply applied to two-valued random quantities, rather than many valued random

quantities. Just as the norm of the residual vector in (6) plays an important role in

determining the value of Y, in assessing S, so does the corresponding norm in (7) . .-

relate to the value of Iy in assessing IS .

It is up to you whether you want to consider the quantities, summarized in (6) or

(7). All that we have observed is that if, for example, you specify the values for P(Is),

P(Iy) and P(Is'y), then the theory will determine for you the quantities in (7) (and *..

nothing else). It is up to you in any particular problem to decide what quantities you

wish to determine. All that theory can provide is an organizing framework in which the

implications of your specifications can be clearly displayed. That framework concerns the -

analysis of belief transformations over A, and will be the subject of our next article.
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